Engineering Notes

ENGINEERING NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes should not exceed 2500 words (where a figure or table counts as 200 words). Following informal review by the Editors, they may be published within a few months of the date of receipt. Style requirements are the same as for regular contributions (see inside back cover).

Nonlinear Dynamic Equations of Satellite Relative Motion Around an Oblate Earth

Guangyan Xu* and Danwei Wang[†] Nanyang Technological University, Singapore 639798, Republic of Singapore

DOI: 10.2514/1.33616

I. Introduction

 \mathbf{A}_2 dynamic model of satellite relative motion in the form of differential equations with reference to the local vertical local horizontal (LVLH) coordinate is basic and critical to the study of satellite formation flying. Many versions [1–7] of J_2 dynamic equations have been published. The work [1] by Kechichian presents an exact nonlinear relative model taking into account both J_2 perturbation and air drag. Kechichian applied techniques of Newtonian mechanics and vector calculus to derive the relative dynamics. However, his model is very complex and does not explicitly include some critical components of the J_2 acceleration. The calculation of these J_2 acceleration components is by a tedious algorithm. The model's complexity hampers its application in control designs. Other published dynamic models [2–7] were developed assuming the reference orbit as being unperturbed Keplerian motion; thus, modeling errors are introduced.

In this Note, the satellite relative dynamics is studied based on the perturbed reference orbit, which is accurately described by a set of differential equations. We express the reference orbit in terms of reference satellite variables (RSV) and obtain a simpler representation than that by Kechichian. Furthermore, we use Lagrangian mechanics to derive the satellite relative dynamics, which is different from Kechichian's approach. As a result, we establish an exact J_2 nonlinear relative model independent of the right ascension of the ascending node. The satellite relative motion is explicitly expressed in terms of very few physical parameters and a set of simple first-order differential equations. This simplicity is due to the fact that both the spherical and the J_2 accelerations are independent of the change of the right ascension of the ascending node.

Received 21 July 2007; revision received 17 March 2008; accepted for publication 17 March 2008. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the \$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/08 \$10.00 in correspondence with the CCC.

II. J_2 Reference Satellite Dynamics in a Rotating Frame

In this study, one satellite, or a virtual satellite, is taken as the reference satellite and the others as member satellites. Without loss of generality, we consider a two-satellite system, that is, a free-flying reference satellite S_0 (without control force) and a controlled member satellite S_j (with control force). This section is devoted to establishing the J_2 dynamics of the reference satellite S_0 in the local rotating frame.

Two Cartesian coordinate frames are used as shown in Fig. 1. The Earth centered inertial (ECI) coordinate frame is spanned by the unit vectors $(\hat{\mathbf{X}}, \hat{\mathbf{Y}}, \hat{\mathbf{Z}})$. The LVLH coordinate frame is attached on the reference satellite S_0 . We denote the position and the velocity of the satellite S_0 by the vectors \mathbf{r} and $\dot{\mathbf{r}}$, respectively. The vector of the angular momentum per unit mass is defined as $\mathbf{h} = \mathbf{r} \times \dot{\mathbf{r}}$. Furthermore, we denote the geocentric distance and the angular momentum magnitude of the reference satellite S_0 as $r = |\mathbf{r}|$ and $h = |\mathbf{h}|$. Then, the LVLH coordinate is spanned by the unit vectors

$$\hat{\mathbf{x}} = \mathbf{r}/r$$
 $\hat{\mathbf{y}} = \hat{\mathbf{z}} \times \hat{\mathbf{x}}$ $\hat{\mathbf{z}} = \mathbf{h}/h$ (1)

The angular velocity of the rotating LVLH frame is

$$\boldsymbol{\omega} = \omega_{x} \hat{\mathbf{x}} + \omega_{z} \hat{\mathbf{z}} \tag{2}$$

whose component around the y axis is zero [1], that is, $\omega_y = 0$. We refer to ω_x as the steering rate of the orbital plane and refer to ω_z as the orbital rate, which can be computed [1,8] by

$$\omega_z = h/r^2 \tag{3}$$

The angular velocity ω can also be expressed by the Eulerian angles (Ω, i, θ) , and its three components are [1,8]

$$\omega_{x} = \dot{i}c_{\theta} + \dot{\Omega}s_{\theta}s_{i} \tag{4}$$

$$\omega_{v} = -\dot{i}s_{\theta} + \dot{\Omega}c_{\theta}s_{i} = 0 \tag{5}$$

$$\omega_z = \dot{\theta} + \dot{\Omega}c_i \tag{6}$$

In this Note, we use the notations $s_{\circ} = \sin(\circ)$ and $c_{\circ} = \cos(\circ)$. Using Eq. (2), the velocities of the unit vectors of the LVLH frame are expressed as

$$\dot{\hat{\mathbf{x}}} = \boldsymbol{\omega} \times \hat{\mathbf{x}} = \omega_z \hat{\mathbf{y}} \qquad \dot{\hat{\mathbf{y}}} = \boldsymbol{\omega} \times \hat{\mathbf{y}} = \omega_x \hat{\mathbf{z}} - \omega_z \hat{\mathbf{x}} \qquad \dot{\hat{\mathbf{z}}} = \boldsymbol{\omega} \times \hat{\mathbf{z}} = -\omega_x \hat{\mathbf{y}}$$
(7)

With these properties of the LVLH frame, the dynamics of the reference satellite S_0 under J_2 perturbation can be derived. It is presented in the following Proposition. For clear presentation, we define the following constant:

$$k_{J2} = 3J_2 \mu R_e^2 / 2 \tag{8}$$

where μ is the Earth's gravitational constant, J_2 is the second zonal harmonic coefficient of the Earth, and R_e is the Earth's equatorial radius.

^{*}Research Fellow, School of Electrical and Electronic Engineering, Shenyang Institute of Aeronautical Engineering; gyxu@pmail.ntu.edu.sg.

[†]Corresponding Author, Professor, School of Electrical and Electronic Engineering; edwwang@ntu.edu.sg.

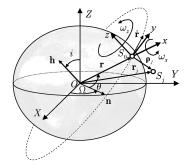


Fig. 1 ECI and LVLH coordinate frames.

Proposition 1: Considering the spherical gravity and the J_2 gravity of the Earth, the motion of the reference satellite S_0 can be described by a set of differential equations as follows:

$$\dot{r} = v_{x} \tag{9}$$

$$\dot{v}_x = -\frac{\mu}{r^2} + \frac{h^2}{r^3} - \frac{k_{J2}}{r^4} (1 - 3s_i^2 s_\theta^2)$$
 (10)

$$\dot{h} = -\frac{k_{J2}s_i^2 s_{2\theta}}{r^3} \tag{11}$$

$$\dot{\theta} = \frac{h}{r^2} + \frac{2k_{J2}c_i^2 s_\theta^2}{hr^3}$$
 (12)

$$\dot{i} = -\frac{k_{J2}s_{2i}s_{2\theta}}{2hr^3} \tag{13}$$

$$\dot{\Omega} = -\frac{2k_{J2}c_i s_\theta^2}{hr^3} \tag{14}$$

Proof: Considering the spherical gravity and the J_2 gravity, the motion of the satellite S_0 is governed by the following equation:

$$\ddot{\mathbf{r}} = -\nabla U \tag{15}$$

where the gravitational potential U is

$$U = -\frac{\mu}{r} - \frac{k_{J2}}{r^3} \left(\frac{1}{3} - s_\phi^2 \right) \tag{16}$$

with ϕ being the geocentric latitude. Considering Eqs. (3) and (7), the acceleration vector $\ddot{\mathbf{r}}$ of the satellite S_0 is derived by taking the time derivatives twice to the position vector $\mathbf{r} = r\hat{\mathbf{x}}$ and expressed as

$$\ddot{\mathbf{r}} = \left(\dot{v}_x - \frac{h^2}{r^3}\right)\hat{\mathbf{x}} + \frac{\dot{h}}{r}\hat{\mathbf{y}} + \frac{\omega_x h}{r}\hat{\mathbf{z}}$$
 (17)

where the radial velocity $v_x = \dot{r}$ is defined and hence Eq. (9) is established. On the other hand, using the constant defined in Eq. (8) and the fact $s_{\phi} = Z/r$, the gradient of U is obtained as follows:

$$\nabla U = \left(\frac{\mu}{r^3} + \frac{k_{J2}}{r^5} (1 - 5s_{\phi}^2)\right) \mathbf{r} + \frac{2k_{J2}s_{\phi}}{r^4} \hat{\mathbf{Z}}$$
 (18)

Furthermore, using the fact $^{\mathrm{TM}}$

$$\hat{\mathbf{Z}} = s_{\theta} s_{i} \hat{\mathbf{x}} + c_{\theta} s_{i} \hat{\mathbf{y}} + c_{i} \hat{\mathbf{z}}$$
(19)

as well as $s_{\phi} = s_{\theta} s_i$ and $\mathbf{r} = r \hat{\mathbf{x}}$, Eq. (18) becomes

$$\nabla U = \frac{\mu}{r^2} \hat{\mathbf{x}} + \frac{k_{J2}}{r^4} (1 - 3s_i^2 s_\theta^2) \hat{\mathbf{x}} + \frac{k_{J2} s_i^2 s_{2\theta}}{r^4} \hat{\mathbf{y}} + \frac{k_{J2} s_{2i} s_\theta}{r^4} \hat{\mathbf{z}}$$
(20)

Substituting Eqs. (17) and (20) into Eq. (15), we establish Eqs. (10) and (11) and obtain

$$\omega_x = -\frac{k_{J2}s_{2i}s_{\theta}}{hr^3} \tag{21}$$

Replacing ω_x in Eq. (4) with Eq. (21), the dynamics(13) and (14) of (i, Ω) are established from Eqs. (4) and (5). Finally, using Eqs. (3) and (14) into Eq. (6), the dynamics (12) of θ is established. Clearly, six variables $(r, v_x, h, \theta, i, \Omega)$ are solutions of the dynamics (9–14) and completely describe the motion of the satellite S_0 .

To the dynamics in Proposition 1, we have the following Remark. *Remark 1*: We refer to the six variables $(r, v_x, h, \theta, i, \Omega)$ as reference satellite variables. We notice that the dynamics (9–13) are independent of the right ascension of the ascending node Ω . This is because both the spherical and the J_2 gravitational potentials are symmetric to the Earth's rotation axis $\hat{\mathbf{Z}}$. Thus, we refer to the five variables (v_x, h, r, θ, i) as compact reference satellite variables (CRSV).

The rotation of the LVLH frame can be conveniently expressed in terms of CRSV. Taking time derivatives to the orbital rate ω_z in Eq. (3) and the steering rate ω_x in Eq. (21), respectively, and using Eqs. (9) and (11–13), the orbital acceleration α_z and the steering acceleration α_x are obtained as

$$\alpha_z = \dot{\omega}_z = -\frac{2hv_x}{r^3} - \frac{k_{J2}s_i^2 s_{2\theta}}{r^5}$$
 (22)

$$\alpha_x = \dot{\omega}_x = -\frac{k_{J2}s_{2i}c_{\theta}}{r^5} + \frac{3v_x k_{J2}s_{2i}s_{\theta}}{r^4h} - \frac{8k_{J2}^2 s_i^3 c_i s_{\theta}^2 c_{\theta}}{r^6h^2}$$
(23)

III. Derivation of Exact J₂ Nonlinear Relative Dynamics

A. Lagrangian Formulation of Relative Motion

In this section, we use the Lagrangian formulation to develop the relative dynamics of the member satellite S_j . The Lagrangian formulation for the satellite relative motion is

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L_j}{\partial \dot{\mathbf{q}}_j} \right) - \frac{\partial L_j}{\partial \mathbf{q}_j} = \mathbf{F}_j \tag{24}$$

where $\mathbf{q}_j = [x_j \quad y_j \quad z_j]^T$ and $\mathbf{F}_j = [F_{jx} \quad F_{jy} \quad F_{jz}]^T$ are, respectively, the configurations and the control forces of the satellite S_j in the LVLH coordinate and L_j is its Lagrangian, which can be expressed in the form of

$$L_i(\mathbf{q}_0, \dot{\mathbf{q}}_0, \mathbf{q}_i, \dot{\mathbf{q}}_i) = K_i(\mathbf{q}_0, \dot{\mathbf{q}}_0, \mathbf{q}_i, \dot{\mathbf{q}}_i) - U_i(\mathbf{q}_0, \mathbf{q}_i)$$
(25)

where \mathbf{q}_0 is the configuration vector of the reference satellite S_0 in the ECI frame. K_j and U_j are, respectively, the kinetic and potential energies of the jth member satellite. Because the kinetic energy K_j should be expressed in terms of inertial motion, it depends on not only the relative motion $(\mathbf{q}_j, \dot{\mathbf{q}}_j)$ of the satellite S_j in the LVLH frame but also the transport motion $(\mathbf{q}_0, \dot{\mathbf{q}}_0)$ of the LVLH frame in the ECI frame. On the other hand, the potential energy U_j is solely due to gravity and thus is independent of velocities. Substituting Eq. (25) into Eq. (24) yields

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial K_j}{\partial \dot{\mathbf{q}}_i} \right) - \frac{\partial K_j}{\partial \mathbf{q}_i} + \frac{\partial U_j}{\partial \mathbf{q}_i} = \mathbf{F}_j \tag{26}$$

which is the Lagrangian formulation for the relative motion of the member satellite S_j in the LVLH frame. The keys to use the formulation Eq. (26) are the precise calculations of the kinetic energy K_i and the potential energy U_j .

B. Kinetic Energy

The position vector of the satellite S_i , as shown in Fig. 1, is

$$\mathbf{r}_{j} = \mathbf{r} + \boldsymbol{\rho}_{j} = r\hat{\mathbf{x}} + (x_{j}\hat{\mathbf{x}} + y_{j}\hat{\mathbf{y}} + z_{j}\hat{\mathbf{z}})$$
 (27)

Using identities in Eq. (7), the velocity vector $\dot{\mathbf{r}}_j$ can be calculated by taking the time derivative of (27). Then, the kinetic energy per unit mass of the satellite S_i is

$$K_{j} = \frac{1}{2}\dot{\mathbf{r}}_{j} \cdot \dot{\mathbf{r}}_{j} = \frac{1}{2}(\dot{x}_{j} + v_{x} - y_{j}\omega_{z})^{2} + \frac{1}{2}(\dot{y}_{j} + (r + x_{j})\omega_{z} - z_{j}\omega_{x})^{2} + \frac{1}{2}(\dot{z}_{j} + y_{j}\omega_{x})^{2}$$
(28)

where the variables $(r, v_x, \omega_x, \omega_z)$ are functions of CRSV.

C. Potential Energy

Considering the J_2 perturbation, the gravitational potential energy of the satellite S_i is

$$U_{j} = -\frac{\mu}{r_{j}} - \frac{k_{J2}}{r_{j}^{3}} \left(\frac{1}{3} - s_{\phi_{j}}^{2}\right)$$
 (29)

where ϕ_j and r_j are the geocentric latitude and the geocentric distance of the satellite S_j , respectively. From Eq. (27), the geocentric distance r_j is obtained as

$$r_j = |\mathbf{r}_j| = \sqrt{(r+x_j)^2 + y_j^2 + z_j^2}$$
 (30)

The physical meaning of the geocentric latitude ϕ_i leads to

$$s_{\phi_i} = r_{iZ}/r_i \tag{31}$$

where r_{jZ} is the projection of \mathbf{r}_j on the Z axis of the ECI frame. Considering Eqs. (19) and (27), r_{iZ} is computed to

$$r_{jZ} = \mathbf{r}_j \cdot \hat{\mathbf{Z}} = (r + x_j)s_i s_\theta + y_j s_i c_\theta + z_j c_i$$
 (32)

Substituting Eq. (31) into Eq. (29), the potential energy of the member satellite S_i is obtained as

$$U_{j} = -\frac{\mu}{r_{j}} - \frac{k_{J2}}{3r_{j}^{3}} + \frac{k_{J2}r_{jZ}^{2}}{r_{j}^{5}}$$
 (33)

where r_i and r_{iZ} are given in Eqs. (30) and (32).

$$\ddot{x}_{j} = 2\dot{y}_{j}\omega_{z} - x_{j}(\eta_{j}^{2} - \omega_{z}^{2}) + y_{j}\alpha_{z} - z_{j}\omega_{x}\omega_{z} - (\zeta_{j} - \zeta)s_{i}s_{\theta}$$

$$-r(\eta_{j}^{2} - \eta^{2}) + F_{jx},$$

$$\ddot{y}_{j} = -2\dot{x}_{j}\omega_{z} + 2\dot{z}_{j}\omega_{x} - x_{j}\alpha_{z} - y_{j}(\eta_{j}^{2} - \omega_{z}^{2} - \omega_{x}^{2}) + z_{j}\alpha_{x}$$

$$-(\zeta_{j} - \zeta)s_{i}c_{\theta} + F_{jy},$$

$$\ddot{z}_{j} = -2\dot{y}_{j}\omega_{x} - x_{j}\omega_{x}\omega_{z} - y_{j}\alpha_{x} - z_{j}(\eta_{j}^{2} - \omega_{x}^{2}) - (\zeta_{j} - \zeta)c_{i} + F_{jz}$$
(34)

where $(F_{jx}, F_{jy}, F_{jz},)$ are control forces on the satellite S_j . The accelerations (ζ, ζ_i) are

$$\zeta = \frac{2k_{J2}s_is_\theta}{r^4} \tag{35}$$

$$\zeta_j = \frac{2k_{J2}r_{jZ}}{r_{:}^5} \tag{36}$$

The angular velocities (η, η_i) can be obtained from

$$\eta^2 = \frac{\mu}{r^3} + \frac{k_{J2}}{r^5} - \frac{5k_{J2}s_i^2 s_\theta^2}{r^5}$$
 (37)

$$\eta_j^2 = \frac{\mu}{r_j^3} + \frac{k_{J2}}{r_j^5} - \frac{5k_{J2}r_{jZ}^2}{r_j^7}$$
 (38)

In the preceding equations, r_j and r_{jZ} are, respectively, the geocentric distance and the distance from the satellite S_j to the Earth's equatorial plane, which are expressed in Eqs. (30) and (32). k_{J2} is a constant and is defined in Eq. (8). Furthermore, the orbital rate ω_z , the steering rate ω_x , the orbital acceleration α_z , and the steering acceleration a_x of the reference satellite are given in Eqs. (3) and (21–23), respectively. The variables (r, v_x, h, θ, i) are the CRSV of the reference satellite at time t.

Proof: Substituting Eq. (28) into the first two terms of Eq. (26), we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial K_j}{\partial \dot{\mathbf{q}}_j} \right) - \frac{\partial K_j}{\partial \mathbf{q}_j} = \begin{bmatrix} \ddot{x}_j - 2\dot{y}_j\omega_z - x_j\omega_z^2 - y_j\alpha_z + z_j\omega_x\omega_z - r(\omega_z)^2 + (\dot{v}_x) \\ \ddot{y}_j + 2\dot{x}_j\omega_z - 2\dot{z}_j\omega_x + x_j\alpha_z - y_j\omega_z^2 - y_j\omega_x^2 - z_j\alpha_x + 2v_x(\omega_z) + r(\alpha_z) \\ \ddot{z}_j + 2\dot{y}_j\omega_x + x_j\omega_x\omega_z + y_j\alpha_x - z_j\omega_x^2 + r(\omega_x\omega_z) \end{bmatrix}$$
(39)

D. Exact Nonlinear J_2 Relative Dynamics

Using the kinetic energy [Eq. (28)] and the potential energy [Eq. (33)] into the Lagrangian formulation [Eq. (26)], the nonlinear dynamic equations of the satellite relative motion can be derived and presented in the following Proposition.

Proposition 2: Consider a two-satellite system of the reference satellite S_0 and the member satellite S_j , as shown in Fig. 1. In the presence of the spherical gravity and the J_2 gravity of the Earth, the relative motion of the satellite S_j in the LVLH frame can be described by

Replacing the variables in parentheses in Eq. (39) with the expressions [Eqs. (3), (10), (21), and (22)] and using the notations (ξ, η^2) in Eqs. (35) and (37), Eq. (39) is converted to

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial K_{j}}{\partial \dot{\mathbf{q}}_{j}} \right) - \frac{\partial K_{j}}{\partial \mathbf{q}_{j}}$$

$$= \begin{bmatrix}
\ddot{x}_{j} - 2\dot{y}_{j}\omega_{z} - x_{j}\omega_{z}^{2} - y_{j}\alpha_{z} + z_{j}\omega_{x}\omega_{z} - r\eta^{2} - \zeta s_{i}s_{\theta} \\
\ddot{y}_{j} + 2\dot{x}_{j}\omega_{z} - 2\dot{z}_{j}\omega_{x} + x_{j}\alpha_{z} - y_{j}(\omega_{z}^{2} + \omega_{x}^{2}) - z_{j}\alpha_{x} - \zeta s_{i}c_{\theta} \\
\ddot{z}_{j} + 2\dot{y}_{j}\omega_{x} + x_{j}\omega_{x}\omega_{z} + y_{j}\alpha_{x} - z_{j}\omega_{x}^{2} - \zeta c_{i}
\end{bmatrix}$$
(40)

On the other hand, substituting Eq. (33) into the third term in Eq. (26) and using notations (ζ_i, η_i^2) in Eqs. (36) and (38), we get

$$\frac{\partial U_j}{\partial \mathbf{q}_j} = [\eta_j^2(r+x_j) + \zeta_j s_i s_\theta \quad \eta_j^2 y_j + \zeta_j s_i c_\theta \quad \eta_j^2 z_j + \zeta_j c_i]^T$$
(41)

Then, substituting Eqs. (40) and (41) into Eq. (26), the dynamics(34) is established. \Box

We have the following Remarks about the nonlinear relative dynamics in Proposition 2.

Remark 2: No approximation is taken in the derivation, and thus the dynamics (34) is the exact under J_2 perturbation.

Remark 3: When we apply the relative model [Eq. (34)] to study the guidance and control problems of satellite formation, the dynamics expressed in Eqs. (9–13) is a good candidate to propagate CRSV (r, v_x, h, θ, i) under J_2 perturbation.

Remark 4: Governed by the relative dynamics (34) and the CRSV dynamics (9–13), the satellite relative motion under J_2 perturbation is actually described by 11 first-order differential equations. It is independent of the right ascension of the ascending node Ω . This is because both the two-body and the J_2 gravities are axisymmetric and independent of the Ω motion.

Remark 5: Both the acceleration ζ_j and the angular velocity η_j of the satellite S_j have clear physical meanings. We may decompose the gravity on the satellite S_i along the vectors \mathbf{r}_i and \mathbf{Z} to

$$\mathbf{g}_{i} = -\nabla U_{i} = -r_{i}\eta_{i}^{2}\hat{\mathbf{r}}_{i} - \zeta_{i}\hat{\mathbf{Z}}$$

$$\tag{42}$$

Thus, ζ_j is the gravity component pointing to the equatorial plane due to J_2 perturbation, and $(r_j \eta_j^2)$ is the gravity component pointing to the Earth's center, which is caused by both the two-body and the J_2 gravities. Suppose there is a virtual circular orbit at the satellite S_j . Then, η_j is actually the osculating angular velocity that generates the centrifugal force of the virtual circular orbit.

IV. Conclusions

A set of differential equations of the satellite relative motion, which takes into account nonlinearity, eccentricity, and J_2 perturbation, has been developed based on Lagrangian mechanics.

As a byproduct, a set of simple J_2 dynamic equations has also been derived to propagate the motion of the reference satellite under J_2 perturbation. Because no approximation is needed in the model development, the developed relative model is exact in the arbitrary eccentric orbits under J_2 perturbation. The model is independent of the right ascension of the ascending node and is simply presented in terms of very few physical parameters. It has potential applications to the precise control of fuel-efficient satellite formation flying.

Acknowledgment

Funded in part under Project Agreement No. POD0513235 with the Defence Science and Technology Agency, Singapore, Republic of Singapore.

References

- Kechichian, J. A., "Motion in General Elliptic Orbit with Respect to a Dragging and Precessing Coordinate Frame," *Journal of the Astronautical Sciences*, Vol. 46, No. 1, Jan.–March 1998, pp. 25–45.
- [2] Schweighart, S. A., and Sedwick, R. J., "High-Fidelity Linearized J2 Model for Satellite Formation Flight," *Journal of Guidance, Control, and Dynamics*, Vol. 25, No. 6, Nov.–Dec. 2002, pp. 1073–1080.
- [3] Schweighart, S. A., and Sedwick, R. J., "Cross-Track Motion of Satellite Formation in Presence of J2 Disturbances," *Journal of Guidance, Control, and Dynamics*, Vol. 28, No. 4, July–Aug. 2005, pp. 824–826. doi:10.2514/1.12387
- [4] Tillerson, M., and How, J. P., "Advanced Guidance Algorithms for Spacecraft Formation-Keeping," *Proceedings of the 2002 American Control Conference*, Vol. 4, IEEE, Piscataway, NJ, 8–10 May 2002, pp. 2830–2835.
- [5] Vadali, S. R., Vaddi, S. S., Naik, K., and Alfriend, K. T., "Control of Satellite Formations," AIAA Paper 2001-4028, 2001.
- [6] Ross, I. M., "Linearized Dynamic Equations for Spacecraft Subject to J2 Perturbations," *Journal of Guidance, Control, and Dynamics*, Vol. 26, No. 4, 2003, pp. 657–659.
- [7] Ploen, S. R., Scharf, D. P., Hadaegh, F. Y., and Acikmese, A. B., "Dynamics of Earth Orbiting Formations," AIAA Paper 2004-5134, 2004.
- [8] Breakwell, J. V., Lecture Notes on Space Mechanics, Stanford University, Department of Aeronautics and Astronautics, Stanford, CA, 1974